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On higher-order mixed FEM for low Mach number �ows:
application to a natural convection benchmark problem
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Institute of Applied Mathematics and IWR; University of Heidelberg; INF 293; D-69120 Heidelberg; Germany

SUMMARY

We consider higher-order mixed �nite elements with continuous pressures for the computation of sta-
tionary compressible �ows at low Mach number. The proposed approach is based on a fully coupled
treatment of the governing equations and therefore, for steady-state calculations, does not rely on time-
stepping techniques. The non-linear problem is solved by means of a quasi-Newton iteration. The
strongly coupled system resulting from higher-order discretization of the linearized equations requires
adequate solvers. We propose a new scheme based on multigrid methods with varying FEM ansatz
orders on the grid hierarchy as well as multiplicative smoothers based on blocking techniques. Com-
putational results are described for a benchmark con�guration including a �ow with heat transfer in
the low Mach number regime. Furthermore, the issue of anisotropic grids is addressed in that context.
Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The higher-order �nite-element methods as compared to their lower-order counterpart, provide
small di�usion errors, easier implementation of the inf–sup condition and an exponential decay
of the numerical error for smooth solutions (see Reference [1]). In practice, however, the
existence of boundary layers restricts locally the smoothness of the solution and may a�ect
the overall accuracy. Furthermore, the strongly coupled system resulting from higher-order
discretization requires suitable solvers.
The goal of this paper is twofold. New solvers based on multigrid methods for higher-

order discretization are presented and applied to the simulation of a thermally driven cavity
in the low Mach number regime. The considered benchmark con�guration includes large
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1340 V. HEUVELINE

temperature gradients and is solved for various Rayleigh numbers. The highly non-linear
character of the considered equations for this con�gurations as well as the existence of strong
boundary layers imposes the use of an involved solution process. We determine the ‘break-
even’ point regarding the order of the discretization and the highest e�ciency in order to
reach a prescribed tolerance for the Nusselt numbers associated to the two vertical walls of
the considered cavity.
The outline of the remainder of this paper is as follow. In Section 2 we formulate the

governing equations of the considered low Mach number model and de�ne the benchmark
con�guration. The discretization of the partial di�erential equations by higher-order �nite
element methods is described in Section 3. Section 4 is devoted to the solution process. A
quantitative comparison with regard to approximation order and the computational e�ciency
for the proposed discretizations are presented in Section 5.

2. MODEL AND BENCHMARK SPECIFICATIONS

In many �ow problems, the velocity of the �ow is much slower than the speed of sound.
Such low Mach number �ows are almost hydrodynamically incompressible and compression is
mainly due to thermodynamical e�ects (e.g. heat transfer). The classical compressible form of
the Navier–Stokes equations does not take advantage of this property since this model includes
the propagation of acoustic waves. Furthermore, it is well known that the incompressible
Navier–Stokes or the Boussinesq equations are valid only under the assumption of small
temperature gradients [2]. Several approaches have been developed in order to derive low
Mach models from the compressible or incompressible Navier–Stokes equations (see e.g.
References [3–11]). A classical approach is based on the decoupling of the density variable
from the hydrodynamical pressure (see e.g. Reference [6]). The resulting system of equations
reads

@t�+∇ · (�v) = 0 (1)

@t(�v) +∇ · �vv+∇p+∇ · �= �g (2)

cp�DtT −Dtp−∇ · (�∇T ) + (� : ∇v) = 0 (3)

�=
pth
RT

(4)

where Dtf := @tf+v ·∇f describes the substantial time derivative. In the equations of motion
(2) and energy (3), the stress tensor is denoted by �. We assume Newtonian �uids and neglect
the bulk viscosity which leads us to the following expression:

� :=�(∇u+∇uT) + 2
3�(∇ · u)I (5)

where � is the coe�cient of the shear viscosity. The shear viscosity is assumed to be constant
or to ful�l the Sutherland law approximation (see e.g. Reference [12]), i.e.:

�(T ) :=
(

T
T ∗

)3=2(T ∗ + S
T + S

)
�∗ (6)

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:1339–1356



HIGHER-ORDER FEM FOR LOW MACH NUMBER FLOWS 1341

Figure 1. Con�guration of thermally driven cavity (left) and corresponding parameters (right).

where S is the Sutherland constant. The coe�cient cp represents the speci�c heat at constant
pressure and is supposed to be constant. The quantity � is the thermal conductivity coe�cient
and is assumed to have the following form:

�(T ) :=
cp
Pr

�(T ) (7)

where Pr is the Prandtl number based on reference transport properties (see Figure 1). The
total pressure p is splitted into two parts

p(x; t)=pth(t) + phyd(x; t) (8)

where the thermodynamical pressure pth is constant in space and the hydrodynamical pressure
phyd is neglected in the perfect gas law (4). Since we restrict ourselves to steady-state �ows
in an enclosure (see Figure 1), the thermodynamical pressure can easily be derived from a
mass conservation argument which leads to the following expression:

Pth =m0

(∫
�

1
RT

dx
)−1

(9)

where m0 describes the initial mass

m0 =
∫
�
�0 dx=

1
R

∫
�

P0
T0
dx (10)

for some given reference temperature T0 and thermodynamic pressure P0. In the more general
set-up of non-stationary state �ows, the thermodynamic pressure is given by an ODE in time
(see Reference [11] for more details). Further, the external forces are described by g and
are limited to gravitational forces in our context. Equations (1)–(3) must be supplemented
with adequate boundary conditions. This will be done more precisely in the following for the
considered benchmark problem.
Le Quere and Paillere [13] have proposed a benchmark problem for natural convection �ows

with large temperature gradients. It aims at de�ning reference solutions for various parameter

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:1339–1356



1342 V. HEUVELINE

set-ups in order to be able to compare numerical solvers with regard to performances and
accuracy in the lowMach number regime. The benchmark problem is for a buoyancy-driven
�ow in a two-dimensional square enclosure [1; L]× [1; L]. Its con�guration consists of two
insulated horizontal walls and two vertical walls heated to Th, respectively, cooled down to
Tc (see Figure 1). This problem exhibits complex features (see Figure 4) depending on the
Rayleigh number

Ra=Pr
g�20(Th − Tc)L2

T0�20
(11)

and on the temperature di�erence parameter

� :=
Th − Tc
Th + Tc

(12)

In expression (11), the quantities �0 =�(T0; P0) and �0 =�(T0) describe the density and shear
viscosity at given reference temperature T0 and thermodynamic pressure P0. The assumed
numerical values of the initial conditions as well as of the model’s coe�cients are given
in Figure 1. Further, we assume no-slip boundary conditions for the velocity on the rigid
walls. Neumann boundary conditions for the temperature on the horizontal walls ensure their
adiabatic properties whereas, on the vertical walls, Dirichlet boundary conditions for the tem-
perature are imposed. The quantities of interest are the heat transfer to the hot and cold wall
represented by the local and average Nusselt number respectively de�ned by

Nu(y) =
L

Th − Tc

(
�(T )
�(T0)

)
@T
@n

; y∈� (13)

〈Nu〉= 1
L

∫ y=L

y=0
Nu(y) dy (14)

where �=�c (resp. �=�h) for the cold (resp. hot) wall.

3. DISCRETIZATION

Our approach is based on conforming mixed �nite elements discretization with continuous
pressure (see References [14, 15]). We �rst derive a variational formulation of the system
of equations (1)–(3). Let �⊂Rd describe the computational domain which is assumed, for
simplicity, to be polygonal. Let (·; ·) denote the usual L2(�) scalar product in �. The function
space H 1(�) is the classical Sobolev space of L2(�)-functions with generalized (in the sense
of distributions) �rst-order derivatives in L2(�) and H 1

0 := {u∈H 1(�); trace(u)=0}. Further,
we denote

L20(�) :=
{
p∈L2(�);

∫
�
p dx=0

}

The variational formulation of the stationary form of system (1)–(3) is obtained by multiplying
the equations by appropriate test functions � := {�;  ; �} and integrating over the domain �.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:1339–1356



HIGHER-ORDER FEM FOR LOW MACH NUMBER FLOWS 1343

This leads us to de�ne the stationary semi-linear form a(·; ·) by

a(u;�) := (−T−1v:∇T; �) + (∇ · v; �)

+ (�(v · ∇)v;  ) + (�∇v;∇ ) +
(
1
3
�∇ · v− p;∇ 

)
− (�g;  ) (15)

− cp(�v · ∇T; �)− (�∇T;∇�) + (v · ∇p; �)− (� : ∇v; �) (16)

In the di�usive terms, we have used integration by parts. Let X :=L×V d×V the space of test
functions where L :=L2(�) and V :=H 1

0 (�). Then, the weak formulation of system (1)–(3)
reads:
Find u := {p; v; T}∈ ub + X , such that

a(u; �)=0 ∀�∈X (17)

whereas ub describes the prescribed Dirichlet data on the boundary @� or on part of it.
The thermodynamical pressure pth (resp. the density �) is given by the algebraic equation
(9) (resp. (4)). In the case that Dirichlet conditions are imposed along the entire boundary
@� for the velocity, the hydrodynamical pressure is only de�ned modulo a constant and the
corresponding pressure space is then restricted to L20(�) (see Reference [16] for more details).
This is the case for the considered benchmark con�guration.
In order to solve (17) numerically by a Galerkin �nite elements method, the in�nite dimen-

sional space X is replaced by a �nite dimensional FE-space of functions which are piecewise
mapped polynomials on a triangulation Th. The considered meshes are supposed to be shape
regular and geometrically conforming (see Reference [17]). They consist of curvilinear quadri-
lateral (or hexahedral) elements {K} covering the domain ��. For simplicity, we consider only
a�ne meshes where each K ∈Th is a�ne equivalent to the reference element K̂ := (0; 1)d i.e.
K =FK(K̂) with FK a�ne and orientation preserving. The considered trial and test spaces
Xh ⊂X consist of continuous, piecewise polynomial vector functions (so-called Qk elements)
for all unknowns,

X r; s
h :={(ph; vh; Th)∈C( ��)1+d+1=ph|K ◦FK ∈Qs(K̂); vh|K ◦FK; Th|K ◦FK ∈Qr(K̂)} (18)

where s=1 for r=2 and s= r − 2 for r¿3. Here, Qr(K̂) is the space of tensor-product
polynomials of degree r on the reference element K̂ i.e.

Qr(K̂) := span{xiyjzk : 06i; j; k6r} (19)

where k=0 when d=2. For simpli�cation, we adopt the notation Xh to describe X r; s
h if the

order of the discretization needs not to be speci�ed. The resulting discrete problem reads
Find uh = {ph; vh; Th}∈ ub;h + Xh such that

a(uh; �h)=0 ∀�h ∈Xh (20)

Equation (17) has saddle-point structure due the speci�c coupling of the pressure and
the velocity. This is easily seen noticing that Equation (17) includes the Stokes equations.
Therefore, the discretization must ful�l the so-called Bab	uska-Brezzi (BB) condition which
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1344 V. HEUVELINE

particularly guarantees a stable approximation of the pressure and avoids the occurrence spu-
rious pressure modes (see e.g. Reference [14]). One important advantage related to the choice
of Xh for the discretization is that this condition is automatically ful�lled and does not ne-
cessitate any additional stabilization terms. Indeed for r=2, Xh is related to the classical
Hood–Taylor element which is known to be stable uniformly in h (see e.g. Reference [14]).
For r¿3, Xh is related to the elements Qr=Qr−2 for which stability (uniformly in h while
the stability constant degrading O(r−1=2)) has been proven by Stenberg and Suri [18]. In the
case of equal order trial functions for v and p, e.g. the popular Q1=Q1-element, the scheme
requires additional pressure stabilization terms which generally degrade the overall precision
of the solution.
Further, it has been proved that considering the proposed discretization (19) for the Stokes

equations, the inf–sup constant related to the Bab	uska–Brezzi condition is independent of
arbitrary large aspect ratios and exhibits the same dependence on r as in the case of isotrop-
ically re�ned meshes. For two-dimensional (resp. three-dimensional) problems these results
are proved in References [19, 20] (resp. [21]). This is an important property since it allows
the resolution of boundary layers by properly designed anisotropic meshes (see e.g. Refer-
ences [22, 23]). For the special set-up of the considered benchmark, we consider anisotropic
geometric mesh re�nement towards the four walls since, especially for higher Raleigh num-
bers, the solution exhibits sti� boundary layer pro�les for the velocity and temperature com-
ponents (see Figure 4). The construction of the considered anisotropic meshes are related to
the scheme proposed by Sch�otzau et al. [20] and reads
Let 	∈ (0; 1) and Tn; 	 be a triangulation of the interval I := (0; 1)=

⋃2n+2
j=1 Ij such that

x0 = 0; xj =
1
2
	n+1−j j=1; : : : ; n+ 1

xj =1− x2n+2−j j= n+ 2; : : : ; 2n+ 2

where Ij := (xj; xj+1). The considered geometric tensor product mesh 
2
n;	 is then given by

Tn; 	 ⊗Tn; 	 i.e.


2
n; 	 := {Ij×Ik : Ij ∈Tn; 	; Ik ∈Tn; 	} (21)

The mesh 
2
3;0:35 is shown in Figure 2. This scheme allows the construction of anisotropic

meshes with arbitrarily large aspect ratios. In practice, however, due to limitations inherent
in the solution process (see Section 4) we restrict ourselves to meshes with aspect ratios
below 20.
For transport dominated problems the standard Galerkin �nite-element methods are known to

produce often widely oscillatory solution on coarse grids. First, this may hint to gain a valuable
initial approximation by means of nested iteration (see e.g. Reference [24]). Secondly, the
robustness and e�ciency of the used multigrid method for the solution process (see Section 4)
may be greatly deteriorated through such erroneous coarse grid corrections. To cope with
this problem we therefore stabilized the dominant convection by means of the usual SUPG
approach (‘streamline upwinding Galerkin’ [25]). We refer to the paper of Gerdes et al. [26]
for a complete description in the context of higher-order methods. This technique which
we applied on coarse grids only consists in introducing additional least-square terms in the
equilibrium equations. In order to formulate the considered approach in short terms, we write
the original system (1)–(3) in the compact form L(u)u=0 with a non-linear operator L(·).
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HIGHER-ORDER FEM FOR LOW MACH NUMBER FLOWS 1345

Figure 2. Geometric tensor product mesh 
2
n;	 for n=3, 	=0:35, aspect ratio= 15.1.

Then, the stabilization process consists in the modi�cation of the original semi-linear form
ah; � by a mesh-dependent semi-linear form

a
(uh; �) := a(uh; �) + 〈Luh; S�〉


with a di�erential operator S which can be chosen in di�erent ways. Here, we use S= − L∗

and take 
k ∼ hK proportional to the local mesh size,


k =0:5
(
min{�; �}

h2K
+

|v|∞; K

hK

)−1

The 
-dependent inner product is de�ned as usual by

〈u; v〉
 :=
∑

K∈Th


K(u; v)K

Accordingly, we seek uh ∈ ub;h + Xh such that

a
(uh; �h)=0 ∀�h ∈Xh (22)

Regarding the boundary conditions, it is important to notice that the natural boundary con-
ditions for the temperature associated with the weak formulation (15) allow the description
of insulated boundaries since they lead to Neumann-type weak boundary condition @T=@n=0.
However, this condition is ful�lled in a weak sense only and therefore may not hold pointwise
in the discrete space Xh. This fact, illustrated in Section 5, results physically in imperfectly
insulated boundaries. In the context of the considered benchmark this may be a serious draw-
back for precise calculations since any heat transfer occurring along the walls which are
assumed to be insulated may greatly modify the Nusselt numbers associated to the hot and
cold vertical walls. As shown in Section 5, the use of higher-order �nite elements is a great
advantage regarding this issue since they allow to considerably diminish the heat transfer
along the insulated boundaries, even on coarse grids.
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1346 V. HEUVELINE

4. SOLVER

In our approach, the non-linear algebraic system (20) is solved implicitly in a fully coupled
manner by means of a damped Newton method. Denoting the derivatives of a(·; ·) take at a
discrete function uh ∈Xh by a′(uh; ·)(·), the linear system arising at each Newton step k has
the following form:

a′(uk
h; �h)(w

k
h)= (r

k
h ; �h) ∀�h ∈Xh (23)

where rkh is the equation residual of the preceding approximation uk
h and wk

h corresponds to
the needed correction. The updates uk+1

h = uk
h + �kwk

h with a relaxation parameter by means
of Armijo rule are carried out until convergence. On the coarser grids, when the additional
transport stabilization terms are included in the discretization (see Equation (22)), the linear
system corresponding to (23) reads

a′(uk
h; �h)(w

k
h) + 〈L′(uk

h)w
k
h ; S

′(uk
h)�h〉
=(rkh ; �h) ∀�h ∈Xh (24)

In practice, the Jacobian involved in (23) (resp. (24)) is directly derived from the analytical
derivative of the variational system (20) (resp. (22)).
It is well known that the ability to converge as well as the convergence rate of Newton

iterations greatly depend on the quality of the initial approximation (see e.g. Reference [27]).
In order to gain such valuable initial approximations, we consider a mesh hierarchy Thl with
Thl ⊂Thl+1 where the corresponding system of Equations (20) are successively solved taking
advantage of the previously computed solution i.e. the non-linear Newton steps are embedded
in a nested iteration process (see Reference [24, chapter 8]). This technique allows in our
context to concentrate the needed Newton steps on coarse grids where the resolution of the
linear problem (23) remains relatively cheap (see Section 5). In case of transport dominated
�ows, the stabilized formulation (22) ensures the existence of a solution on such coarse
grids.
The linear subproblems (23) (resp. (24)) are solved by the generalised minimal resid-

ual method (GMRES) (see Reference [28]) preconditioned by means of multigrid iteration
(see References [24, 29, 30] and references therein for the description of di�erent multigrid
techniques in the context of �ow simulation). The proposed preconditioner based on a new
multigrid scheme oriented toward conformal higher-order FEM is a key ingredient of the over-
all solution process and is therefore described in more detail in the following. Two speci�c
features characterize the proposed scheme: varying orders of the FEM ansatz on the mesh
hierarchy and Vanka-type smoother [31] adapted to higher-order discretization.
The higher-order discretization results in linear systems which are cellwise and at least

componentwise fully coupled. A straightforward application of the multigrid method is not
e�ective since the separation of high- and low-frequency error components on the mesh hi-
erarchy is not possible on such fully coupled patches. Therefore, in our approach, the defect
correction on coarser mesh occurs exclusively considering the lowest possible order of our
discretization i.e. X 2;1

h related to the Hood–Taylor element. The resulting multigrid scheme can
be interpreted as a multiplicative subspace correction [32]. Let Pl: X 2;1

hl−1
→X r; s

hl−1
describes the

interpolation operator between X 2;1
hl−1

and X r; s
hl
and Rl :=P∗

l . Further, we denote the Jacobian
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p component

v,T component

Mesh

2x2 Patch

Figure 3. Two-dimensional patch for the smoothing step considering the discretization space X 2; 1
h .

de�ned in Equation (23) (resp. (24)) on level l by Al. The proposed multigrid scheme
reads:

Algorithm 1: um+1
l =MG(l; r; s; �; um

l ; fl; 1; 2)
(0) Set discretization space: Al : X r; s

hl
→ X r; s

hl
;

(1) Coarsest grid: if (l = 0) um+1
l =A−1

l fl; return;

(2) Presmoothing: �um
l = S1

l (u
l
m)

(3) Coarse grid correction:
Compute the defect: �dm

l =fl − Al �um
l ;

Restrict the defect in X 2;1
hl−1

�dm
l−1 =Rl �dm

l ;
Recursion: ûm

l−1 =MG�(l− 1; 2; 1; �; 0; �dml−1; 1; 2);
Interpolate: ûm

l =Plû
m+1
l−1 ;

Update: ũm
l = �u

m
l + ûm

l ;

(4) Postsmoothing: um+1
l = S2

l (ũ
l
m)

Clearly, the coarse grid defect correction in the space X 2;1
h (see Algorithm 1) cannot damp

the error components related to the cells inner nodes (see Reference [33]). The proposed
smoothing steps consist of multiplicative steps including the solution of local problems on
2×2 (resp. 2×2×2) cell patches for two-dimensional (resp. three-dimensional) problems. On
each patch, all velocity and temperature components are included whereas for the pressure
components, the inner nodes only are part of the considered local block (see Figure 3). Let
Ap
loc describe the Jacobian’s block corresponding to the previously mentioned pressure, velocity
and temperature components on a given patch P

p
2×2. Further, for a vector w we denote by

wloc the local vector containing the p; v and T components on the current patch. Then, the

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:1339–1356
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smoothing step reads

Algorithm 2: uk+1 =Smooth(uk ; f)
(0) Initialization: �uk = uk ;

(1) Loop on the vertices Vp of the current mesh Th;

(2) Current patch: De�ne the current 2× 2 patch P
p
2×2 centred on Vp;

(3) Compute defect: dk
loc = (f − Ah �uk)loc;

(4) Direct Solver: ûk
loc = (A

p
loc)

−1dk
loc

(5) Update: �uloc = �uk
loc +!ûk

loc
End Loop 1/;

(6) Exit: Set uk+1 = �uk .

The proposed scheme which is related to the symmetrical coupled Gauss–Seidel (SCGS)
method proposed by Vanka [31], is empirically observed to provide good smoothing rates (see
Section 5). Similar approaches for the incompressible Navier–Stokes equations considering
di�erent discretizations have been proposed by Volker and Tobiska [34]. The solution of the
local system in step (4) of Algorithm 2 occurs by means of a direct solver. Two possible
computational modii are used in practice. A so-called resident modus stores the inverse of the
local block Ap

loc during the overall solution process of the linear system. It allows to increase
the numbers 1 and 2 of smoothing iterations with few additional CPU costs. The second
on the �y modus which is used especially on the �nest grids does not store the inverse or
any decomposition of local matrices i.e. the local linear subproblems must be solved at each
iteration. This modus is clearly much more CPU expensive but relies on minimal memory
capacity.

5. NUMERICAL RESULTS

In order to investigate the solver performances and the higher-order discretization, we consider
four di�erent con�gurations of the benchmark problem described in Section 2. They di�er
through the de�nition of the triplet (Ra; �; �−law) whereas Ra describes the Rayleigh number
(see De�nition (11)), � is the temperature di�erence parameter de�ned in (12) and � − law
describes the dependency law of the shear viscosity with regard to the temperature which is
assumed in our numerical tests to be constant or to follow the Sutherland approximation (6).
The following set-up leads to problems with increasing complexity (see Figures 4 and 5):
If not explicitly mentioned, the coarse grid for the numerical tests is assumed to be 
2

3;0:35
de�ned in (21) and plotted in Figure 2. Due to solver limitations with regard to the as-
pect ratios, re�nement occurs by means of isotropic bisection which leads to embedded �-
nite spaces on the grid hierarchy. Beside the computation of reference solutions for the four
cases described in Table I, we compare the approximation capabilities of the di�erent
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HIGHER-ORDER FEM FOR LOW MACH NUMBER FLOWS 1349

Figure 4. From left to right, top to bottom: streamlines of the heat driven �ow for the following triplet
(Ra; �; �(T )− law): (104; 0:01; constant), (105; 0:01; constant), (106; 0:01; constant), (106; 0:6; constant),

(106; 0:6; Sutherland) and (107; 0:6; Sutherland).

Figure 5. Isolines of the temperature for the experiments E1 and E4.
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1350 V. HEUVELINE

Table I. Benchmark con�gurations considered for the numerical tests.

Experiment/notation Rayleigh � �(T )− law

Exp. 1/(E1) 105 0.01 Constant
Exp. 2/(E2) 106 0.6 Constant
Exp. 3/(E3) 106 0.6 Sutherland
Exp. 4/(E3) 107 0.6 Sutherland

Table II. Convergence records for experiments E1 and E2 considering the discretization X 2; 1
h .

Experiment E1 Experiment E2

#Dofs 〈Nuh〉 pth=P0 〈Nuh〉 pth=P0

3556 4.517659 0.9999630227 8.848010 0.8566014202
13 764 4.521599 0.9999630239 8.855156 0.8563334424
54 148 4.521664 0.9999630164 8.859982 0.8563330011
214 788 4.521649 0.9999630161 8.859804 0.8563377658
855 556 4.521649 0.9999630161 8.859780 0.8563378085

Table III. Convergence records for experiments E3 and E4 considering the discretization X 2; 1
h .

Experiment E3 Experiment E4

#Dofs 〈Nuh〉 pth=P0 〈Nuh〉 pth=P0

3 556 8.638586 0.920776895 16.387549 0.938574058
13 764 8.683251 0.923645879 16.237860 0.922781637
54 148 8.688562 0.924781637 16.244374 0.922990967
214 788 8.686877 0.924474583 16.242052 0.922821613
855 556 8.686641 0.924447879 16.241706 0.922637156

discretization X r; s
h de�ned in (18) for r ∈ [2; 5] as well as the e�ciency of the proposed solution

process.

5.1. Toward reference solutions

The quantities of interest are the Nusselt number distribution on the hot and cold walls of
the enclosure (see Figure 1), the average Nusselt number and the change of thermodynamical
pressure pth relative to the initial pressure P0. The convergence records for the four con-
sidered cases (see Table I) considering the discretization X 2;1

h are given in Tables II and
III and the corresponding Nusselt number distribution are plotted on Figure 6. It has to be
noted that already with X 2;1

h the number of unknowns needed to compute these reference
solutions is much lower than their low order (Q1/Q1/Q1 stabilized) counterparts (see Refer-
ences [13, 35, 36]). Beside the fact that the discretization X 2;1

h is stable and therefore do not
need additional pressure stabilization terms, the higher-order elements allow to better ful�ll
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Figure 6. Nusselt number distribution along the hot and cold walls for
experiments E1, E2 (top) and E3, E4 (bottom).

the physical requirements of adiabatic walls @T=@n=0 on the top and bottom of the vessel
(see Figure 7). Any heat transfer through the top and bottom wall may indeed considerably
in�uence the Nusselt numbers. The resulting reference solutions are summarized in Table IV.
For the experiments E2;E3 and E4 the computed solutions are in accordance with the o�cial
values given in References [13, 35]. It has to be noted that the dissipative terms (� :∇v) in
the energy equation (3) may be neglected for the considered precision of the reference so-
lutions. Assuming perfectly insulated top and bottom walls this leads to 〈Nu〉h + 〈Nu〉c = 0.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:1339–1356



1352 V. HEUVELINE

0 0.1 1
-0.5

0

0.5

1.0

1.5

2.0

2.5
x 10-3

y_Coordinates on the wall considered wallN
us

se
lt 

nu
m

be
r 

(h
ot

 w
al

l)/
 -

N
us

se
lt 

nu
m

be
r 

(c
ol

d 
w

al
l) 

Top Wall : Nu 
Bottom wall:-Nu

0.90.80.70.60.50.40.30.2

0 0.1 1
-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

y_Coordinates on the wall considered wallN
us

se
lt 

nu
m

be
r 

(h
ot

 w
al

l)/
 -

N
us

se
lt 

nu
m

be
r 

(c
ol

d 
w

al
l)

Top Wall :  Nu 
Bottom wall: -Nu

0.90.80.70.60.50.40.30.2

Figure 7. Faulty Nusselt number distribution on the top and bottom walls on the third
(resp. fourth) re�nement level for experiment E4 considering the discretization X 2;1

h (top)
(resp. Q1=Q1=Q1 (stabilized) (bottom)).

Further, a repository of reference solutions for a wider range of parameters can be found in
Reference [37].

5.2. Comparisons between the discretizations

It is well known that for in�nitely smooth solutions p-re�nement usually leads to an expo-
nential decay of the discretization error (see References [38, 39] and references therein). The
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Table IV. Reference solutions.

Experiment 〈Nuh〉 pth=P0

E1 4.521649 0.999963
E2 8.85978 0.856337
E3 8.6866 0.9244
E4 16.241 0.9226

Table V. Comparison of the discretizations in order to reach the Nusselt number on the hot wall with
a prescribed tolerance for the relative error of: 10−5 for experiment E1, 10−4 for experiment E2, 10−3

for experiment E3 and 10−3 for experiment E4.

Experiments E1–E4
Discretization # Dofs # nz entries �E1disc �E2disc �E3disc �E4disc

X 2; 1
h 54 148 3 024 016 5.7 2.8 1.6 1.3

X 3; 1
h 29 316 2 395 408 4.2 2.1 1 1

X 4; 2
h 13 764 1 654 416 1.3 1 4.3 Divergence

X 5; 3
h 9 668 950 640 1 1.2 8.3 Divergence

goal of this section is to investigate if one can take advantage of this property in the context
of �ow simulation in the low Mach regime. Especially, the existence of sti� boundary layers
pro�les deteriorates locally the smoothness of the solution (see Figures 4 and 5). Numerical
tests are therefore presented for the four con�gurations (E1)–(E4) which present decreas-
ing ‘smoothness’ properties. Further, these numerical tests aim at establishing the break-even
point regarding the order of the discretization and the highest e�ciency in order to reach a
prescribed tolerance for the needed Nusselt numbers. The performances of each discretization
is determined by the CPU time tEdisc normalized by that of the most e�cient alternative tEmin
i.e.

�Edisc =
tEdisc
tEmin

The results presented in Table V show the bene�t of increasing the order of the discretization
with regard to the approximation order. However, for transport dominated problems (cases E3
and E4) the e�ciency considering X 4;2

h and X 5;3
h deteriorates greatly. This is mainly connected

to the fact that increasing the order of the discretization results in an increase of the number of
needed non-linear iterations (see also Section 5.3 as well as Tables VI and VII). Further, each
non-linear steps is much more CPU time consuming due the costly integration steps needed
to assemble the Jacobians (see Equation 23). Unfortunately, fast quadrature techniques similar
to that proposed by Melenk et al. [40] cannot be applied for the complex equation set-up
inherent to the low Mach model. For the extreme case E4 which is at the unsteady limit, the
steady state and consequently the convergence could not be achieved for X 4;2

h and X 5;3
h .
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Table VI. Records of the reduction factors of the linear and non-linear iterations for the case E1.

X 2; 1
h (isotropic) X 2; 1

h (anisotropic) X 4; 2
h (anisotropic)

# Dofs �nl �lin �nl �lin �nl �lin

3556 0.13 0.20 0.13 0.21 0.40 0.18
13 764 0.03 0.23 0.03 0.24 0.03 0.20
54 148 0.001 0.28 0.001 0.27 0.01 0.32
214 788 0.001 0.28 0.001 0.28 0.001 0.33
855 556 0.001 0.29 0.001 0.29 0.001 0.34

Table VII. Records of the reduction factors of the linear and non-linear iterations for the case E3.

X 2; 1
h (isotropic) X 2; 1

h (anisotropic) X 4;2
h (anisotropic)

# Dofs �nl �lin �nl �lin �nl �lin

3556 0.44 0.28 0.51 0.27 0.64 0.20
13 764 0.21 0.31 0.28 0.34 0.48 0.37
54 148 0.17 0.31 0.17 0.33 0.39 0.37
214 788 0.13 0.32 0.13 0.34 0.31 0.38
855 556 0.06 0.31 0.06 0.35 0.17 0.38

5.3. Solver performances

In order to investigate the solver performances, it is applied to the two con�gurations E1 and
E3. The multigrid algorithm uses a V-cycle with two pre- and post-smoothing steps i.e. �=1
and 1 = 2 = 2 in Algorithm 1. The average reduction factor �lin of the linear solver (GMRES
preconditioned by means of the multigrid Algorithm 1) is de�ned by

�lin =
rn
r0

where r0 is the initial residual norm on the current grid and rn describes the residual norm
after the n linear solver iterations necessitated to ful�l the stopping criteria. Similarly, �nl
denotes the average reduction factor of the non-linear steps. In order to analyse the in�uence
of anisotropic grids, comparisons with an isotropic grid which consists in an equidistant tensor
product mesh on [0; 1]×[0; 1] are given in Table VI (resp. VII) for E1 (resp. E4). The reduction
factors of the linear solver show to be almost independent of the mesh size and deteriorate
only slightly on the anisotropic grid (aspect ratio �=15:1). One observes, however, that the
reduction factor of the non-linear iterations becomes worse when increasing the order of the
discretization. This implies that the needed number of non-linear steps to achieve convergence
increases with the order of the discretization. This constitutes a clear limitation to a pure p-
re�nement strategy especially in the context of transport dominated �ows generally leading
to highly non-linear problems.
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6. CONCLUSION

For the computation of low Mach number �ows, we have described an approach based on a
fully coupled treatment of the governing equations. A stable discretization based on higher-
order mixed FEM with continuous pressures and a multigrid method including varying order
discretizations on the grid hierarchy constitute the two main ingredients of the proposed
approach.
The numerical experiments which have been carried out for a natural convection benchmark

clearly show the bene�t of higher-order discretizations with regard to the approximation order.
They further enlight limitations with regard to the order of the discretization for highly non-
linear problems e.g. transport dominated �ows. Indeed, for such problems, increasing the
order of the FEM ansatz generally results in a considerable increase of the needed non-linear
steps. Further, such p-re�nement leads to CPU time-consuming integration steps in order to
assemble the Jacobians throughout the non-linear iterations that may greatly deteriorate the
overall performances.
The proposed solver shows to be robust for a wide range of problem con�gurations. The

reduction factors of the multigrid methods are almost independent of the mesh size and slightly
depends on the aspect ratios � in the range �∈ (1; 20).
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